科学研究

科学研究

学术讲座
当前位置是: 首页 -> 科学研究 -> 学术讲座 -> 正文

Bayesian Integrative Region Segmentation in Spatially Resolved Transcriptomic Studies

作者: 发布时间:2024-04-08 点击数:
主讲人:罗翔宇
主讲人简介:

中国人民大学统计与大数据研究院准聘副教授、博士生导师。2018年博士毕业于香港中文大学统计系。研究方向包括贝叶斯统计、生物信息学、统计计算等。罗翔宇以第一或通讯作者在JASA、AOAS、JCGS、Statistica Sinica、Nature Communications、Bioinformatics、Briefings in Bioinformatics等国际统计或生物信息学期刊发表多篇研究论文。因在批次效应纠正上的贡献,罗翔宇获得美国统计学会颁发的W. J. Youden Award in Interlaboratory Testing。

主持人:朱蔚萱
讲座简介:

The spatially resolved transcriptomic study is a recently developed biological experiment that can measure gene expressions and retain spatial information simultaneously, opening a new avenue to characterize fine-grained tissue structures. We propose a nonparametric Bayesian method named BINRES to carry out the region segmentation for a tissue section by integrating all the three types of data generated during the study—gene expressions, spatial coordinates, and the histology image. BINRES is able to capture more subtle regions than existing statistical partitioning models that only partially make use of the three data modes and is more interpretable than neural-network-based region segmentation approaches. Specifically, due to a nonparametric spatial prior, BINRES does not require a prespecified region number and can learn it automatically. BINRES also combines the image and the gene expressions in the Bayesian consensus clustering framework and thus flexibly adjusts their label alignment contribution weights in a data-adaptive manner. A computationally scalable extension is developed for large-scale studies. Both simulation studies and the real application to three mouse spatial transcriptomic datasets demonstrate that BINRES outperforms the competing methods and easily achieves the uncertainty quantification of the integrative partition. 

时间:2024-04-17 (Wednesday) 16:40-18:00
地点:经济楼N302
讲座语言:中文
主办单位:新浦京8883n平台下载、王亚南经济研究院、邹至庄经济研究院
承办单位:
期数:高级计量经济学与统计学系列讲座2024年春季学期第三讲(总168讲)
联系人信息:许老师,电话:0592-2182991,邮箱:ysxu@xmu.edu.cn
TOP